OWNER'S MANUAL

THE IGBT SERIES OF MIG/MAG

CONTENTS

- 1.Safety	2
- 2.General Description	4
-3.Main Parameter	6
- 4.Structure of welder	7
- 5.Installation	8
- 6.Welding settings quick reference chart	15
- 7.Range of welding current and voltage in CO2 welding	20
- 8. Welding parameters table	20
- 9.Caution	22
- 10. Maintenance	23
- 11. Daily checking	24
- 12. Connection diagram of the machine	27
- 13. Explosion drawing	28

This welding machine for industrial and professional use is in conformity with IEC974 International Safety Standard.

Hereby we state that we provide one year of guarantee for this welding machine since the date of purchase.

Please read and understand this instruction manual carefully before the installation and operation of this machine.

The contents of this manual may be revised without prior notice.

This instruction manual is issued in January 2021.

1.SAFETY

Welding and cutting is dangerous to the operator, people in or near the working area, and the surrounding area if the machine is not correctly operated. Therefore, the performance of welding/cutting must only be under the strict and comprehensive observance of all relevant safety regulations. Please read and understand this instruction manual carefully before the installation and operation.

- ·The switching of function modes while the welding operation is performed, may damage the machine.
- ·Disconnect the electrode-holder cable with the machine, before turning machine on.
- ·A safety switch is necessary to prevent the machine from electrical leakage.
- ·Welding tools used should be of high quality.
- ·Operators should be qualified.

Electric shock: It could be fatal!

- ·Connect the earth cable according to standard regulation.
- ·Avoid all contact with live electrical parts of the welding circuit, electrodes and wires with bare hands. It is necessary for the operator to wear dry welding gloves while he/she performs the welding task.
- •The operator should keep the working piece insulated from himself/herself.

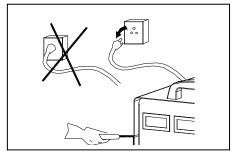
Smoke and gas generated while welding or cutting is harmful to people's health.

- ·Avoid breathing the smoke and gas generated while welding or cutting.
- ·Keep the working area well ventilated.

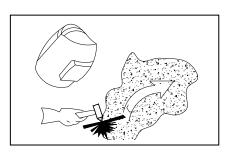
Arc rays: harmful to people's eyes and skin.

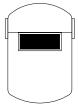
- ·Wear welding helmet, anti-radiation glass and work clothes while the welding operation is performed.
- ·Measures also should be taken to protect people in or near the working area.

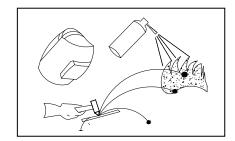
Fire hazard


- ·The welding spatter may cause fire, thus remove flammable material away from the working place.
- ·Have a fire extinguisher nearby, and have a trained person ready to use it.

Noise: possibly harmful to peoples' hearing.


·Noise is generated while welding/cutting, wear approved ear protection if noise level is high.


Machine fault: ·Consult this instruction manual.


·Contact your local dealer or supplier for further advice.

2.GENERAL DESCRIPTION

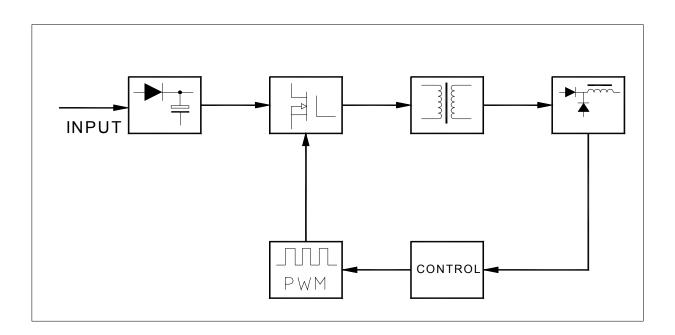
This welding machine is composed of the inverter MIG welder power supply with invariable voltage output external characteristics manufactured with advanced IGBT inverter technology.

With high-power component IGBT, the inverter converts the DC voltage, which is rectified from input 50Hz/60Hz AC voltage, to high-frequency 20KHz AC voltage; as a consequence, the voltage is transformed and rectified. The features of this machine are as follows:

- IGBT inverter technology, current control, high quality, stable performance;
- Closed feedback circuit, invariable voltage output, great ability of balance voltage up to ±15%;
- Electron reactor control, stable welding, little splash, deep molten pool, excellent welding bead shaping;
- Welding voltage can be preset, and the voltmeter displays the preset voltage value when not welding.
- Both welding current and welding voltage can be observed at the same time.
- Burn back time is adjustable.
- Slow wire feeding during arc starting, remove the melting ball after welding, reliable arc starting;
- Wire feeding part is separated from the welding machine, wide welding operation range.
- Small-sized, light-weighed, easy to operate, and economical.

Unpacking your machine

When unpacking, inspect carefully for any damage that may have occurred during transit. Check carefully to ensure all the contents on the list below have teen received in good condition included items:

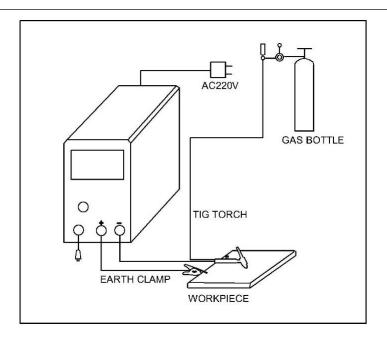

No.	Description	Qty.	Pic
1	MIG Welder	1рс	
2	Operator's Manual	1pc	
3	Electrode Holder 4m	1рс	or
4	Earth Clamp 4m	1pc	Q
5	3m MIG torch	1рс	
6	Tig torch	1рс	
7	Regulator	1рс	
8	Gas Hose 4m	1рс	
9	115/230V Adapter	1рс	U

10	Roller 0.8mm-0.9mm	

Operating environment

Adequate ventilation is required to provide proper cooling for the MIG-GS/GD. Ensure that the machine is placed on a stable level surface where clean cool air can easily flow through the unit. The MIG-GS/GD has electrical components and control circuit boards which will be damaged by excessive dust and dirt, so a clean operating environment is essential

Block Diagram



LIFT TIG also called the contact type arcing TIG.

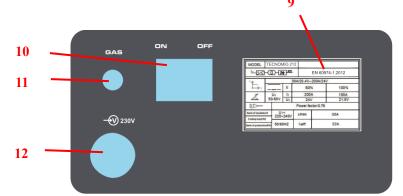
Needed items: inverter welder with LIFT TIG function, contact type TIG torch with one output power cable and one air tube.

The use way of LIFT TIG is shown as below:

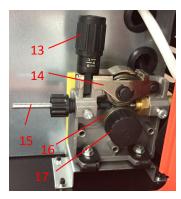
The output power cable connect with the negative output terminal, and the air tube connect with the gas meter on the argon gas bottle. There is a nut cover on the air tube, which can connect with the gas meter. The thread specification for the gas meter and the nut should be the same. Then open the valve of the argon gas bottle and open the valve of the gas meter, we can control the gas flow by adjusting the gas regulating valve on the TIG gun. Make the tungsten needle touch the workpiece, lift the TIG gun up by little, then we can see the arcing.

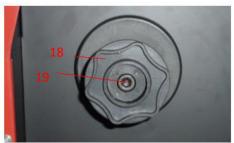
3.MAIN PARAMETER

ТҮРЕ	BLUEARC-200MSTI
Dower cumply yeltogo (\/)	single-phase
Power supply voltage (V)	220V±15%
Input current (A)	36
Power supply capacity (KVA)	8
Current adjustment range (A)	50~200
Output voltage (V)	15~24
Rated output current (A)	200
Rated output voltage (V)	24
Rated duty cycle (%)	30
Power factor	0.75
Efficiency (%)	85
Wire feeder type	External/Internal
Post-flow time (s)	1
Welding wire diameter (mm)	0.6/0.8/1.0
Machine size (mm)	480×310×430
Machine weight (kg)	17
Plate thickness (mm)	≥0.8
Insulation class	F
Protection class	IP21S


Note: The welding duty cycle is the percentage of actual continuous welding time that can occur in a ten minute cycle. For example: 15% at 200amps- this means the welder can weld continuously at 200 amps for 1.5 minutes and then the unit will need to be rested for 8.5 minutes.

The duty cycle can be affected by the environment in which the welder is used. In areas with temperatures exceeding 40° C, the duty cycle will be less than stated. In areas less than 40° C, higher duty cycles have been obtained All tests on duty cycles have been carried out at 40° C with a 50%. So in practical working conditions the duty cycles will be much greater than those stated above.


4.Structure of welder



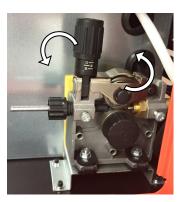
- Left knob / welding mode selection knob/MIG voltage refine
- 2. Left button/ home button
- 3. Right knob /Parameter adjust knob
- Right button / Parameter adjust button /wire speed/diameter/inductance/2T/4T/HOT START/ARC FORCE
- 5. MIG Torch 'Euro Style' Connection Socket
- 6. Positive (+) Welding Output Terminal
- 7. Negative (-) Welding Output Terminal
- 8. Polar conversion line

- 9. rating label
- 10. power switch
- 11. welding gas inlet
- 12. power cable

- 13. Wire tension adjustment
- 14. Wire tension arm & support roller
- 15. Wire input guide
- 16. Wire drive roller
- 17. Drive roller retainer
- 18. wire spool retainer
- 19. Spool brake adjustment

- 20. Torch trigger switch
- 21. Torch "Euro" connector
- 22. Workpiece earth clamp
- 23. Earth lead quick connector
- 24. Conical gas nozzle/shroud
- 25. Welding tip
- 26. Shroud spring
- 27. Tip adapter

5.INSTALLTION


5.1. MIG Welding Set Up & Operation

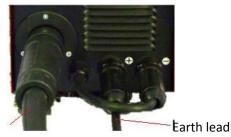
5.1.1 Fitting the spool

- 5.1.1.1 open the cover door for the wire feed compartment. Remove the wire spool retainer(18) by threading off anti clockwise.
- 5.1.1.2 fit the 200mm diameter wire spool to the spool holder, ensuring the end of the wires exits towards the wire feeder from the bottom of the spool. Refit the wire spool retainer(18) and tighten finger tight.
- 5.1.1.3 set the spool brake tension by rotating the adjustment screw(19) using an allen wrench. Clockwise to increase brake tension, counter-clockwise to decrease brake tension. The spool brake tension should be set so that the spool can rotate freely, but does not continue to rotate once the wire feed stops. This may need to be adjusted as the wire is used up and the spool weight decreases.

5.1.2 Loading wire feeder

5.1.2.1 release the wire feeder tension arm(14) by pivoting the wire feed tension adjuster(13) as pictured below

- 5.1.2.2 check the wire drive roller(16) groove matches the selected MIG wire type and size. The drive roller will have two different sized grooves, the size of the groove in use is stamped on the side of the drive roller. For flux cored 'soft' wire ,such as that used in gasless MIG welding, the drive roller groove has a serrated profit. For solid 'hard' MIG wire, the roller groove has a 'v' shaped profile
- 5.1.2.3 the drive roller(16) is removed by threading the drive roller retainer(17) off in the anti-clockwise direction. Once the correct drive roller profile is selected, re-fit the drive roller.
- 5.1.2.4 thread the MIG wire from the spool through the input guide tube(15), through the roller groove and into the outlet guide tube
- 5.1.2.5 Replace the tension arm (14) and the tension adjustment (13). Double check the wire has located correctly in the drive roller groove.
- 5.1.2.6 Adjusting wire feed tension: this is accomplished by winding the knob on the wire tension adjustment arm (14). Clockwise will increase tension, anti-clockwise will decrease tension. There is a numbered scale on the tensioner to indicate the position. Ideal tension should be as little as possible, while maintaining a consistent wire feed with no drive roller slippage. Check all other possible causes of slippage, such as; incorrect/ worn drive roller, worn/ damaged torch consumables, blocked/ damaged torch feed liner, before increasing feed tension.



Warning! - Before changing the feed roller or wire spool, ensure that the mains power is switched off

Warning! - The use of excessive feed tension will cause rapid and premature wear of the drive roller, the support bearing and the drive motor.

5.1.3 setup for gasless MIG welding operation

- 5.1.3.1 Connect the MIG Torch Euro Connector (21) to the torch socket on the front of the welder (5). Secure by firmly hand tightening the threaded collar on the MIG Torch Euro Connector clockwise.
- 5.1.3.2 Check that the correct flux cored, gasless wire, matching drive roller (16) and welding tip (25) are fitted
- 5.1.3.3 Connect Torch Connection Power Lead (8) to the negative (-) welding output terminal (7).
- 5.1.3.4 Connect Earth Lead Quick Connector (24) to the positive (+) output welding terminal (6). See picture below.

MIG Touch

5.1.3.5 Connect Earth Clamp (22) to the work piece. Contact with workpiece must be strong contact with clean, bare metal, with no corrosion, paint or scale at the contact point.

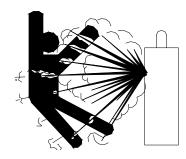
5.1.4 Setup for gas shielded MIG welding operation

Note - Gas shielded MIG welding requires a shielding gas supply, gas regulator and gas shielded MIG wire. These accessories are not supplied standard with the RW1500MP. Please contact your local Repco branch for details 5.1.4.1 Connect the MIG Torch Euro Connector (21) to the torch socket on the front of the welder (5). Secure by firmly hand tightening the threaded collar on the MIG Torch Euro Connector clockwise.

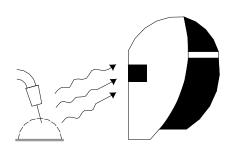
- 5.1.4.2 Check that the correct gas shielded wire, matching drive roller (16) and welding tip (25) are fitted
- 5.1.4.3 Connect Torch Connection Power Lead (8) to the positive (+) welding output terminal (6)
- 5.1.4.4 Connect Earth Lead Quick Connector (22) to the negative (-) output welding terminal (7). See picture below

MIG Touch

5.1.4.5 Connect Earth Clamp (22) to the work piece. Contact with workpiece must be strong contact with clean, bare metal, with no corrosion, paint or scale at the contact point.

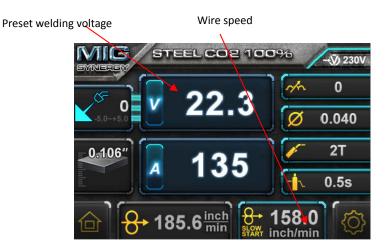

5.1.4.6 Connect the gas regulator (optional) and gas line to the inlet on the rear panel (11). If the regulator is equipped with a flow gauge, the flow should be set between 8-15 L/minute depending on application. If gas regulator is not equipped with a flow gauge, adjust pressure so gas can just be heard coming out of the torch conical nozzle (24). It is recommended that gas flow is checked again, just prior to starting weld This can be done by triggering the MIG torch with the unit powered up.

Connection of Shield Gas


Connect the inert gas hose, which comes from the wire feeder to the copper nozzle of gas bottle. The gas supply system includes the gas bottle, the air regulator and the gas hose, the heater cable should be inserted into the socket of machine's back and use the hose clamp to tighten it to prevent leaking or air-in, so that the welding spot is protected.

Please note:

- 1) Leakage of shielding gas affects the performance of arc welding.
- 2) Avoid the sunshine on the gas cylinder to eliminate the possible explosion of gas cylinder due to the increasing pressure of gas resulted from the heat.
- 3) It is extremely forbidden to knock at gas cylinder and lay the cylinder horizontally.
- 4) Ensure no person is up against the regulator, before the gas release or shut the gas output.
- 5) For MIG-250GW and MIG-250GF, insert the power supply plug of the heater into the 36 VAC (5A) socket on the back panel of the welding machine.
- 6) The gas output volume meter should be installed vertically to ensure the precisely measuring.
- 7) Before the installation of gas regulator, release and shut the gas for several time in order to remove the possible dust on the sieve to avail the gas output.


Note: Please wear welding helmet and protective clothing when MIG (GMAW/FCAW) welding.

5.1.5 Controls for MIG welding

5.1.5.1 Switch the machine on using the main power switch (10). Wait 5 seconds for the digital control program to load up. Press the Left button (2) to mode section and select the mode by Left knob (1), press the Left knob (1) to confirm the selection.

5.1.5.2The multifunction digital display will show two numbers. On the left is the preset welding voltage, on the right is the preset wire feeding speed. These values are adjusted by rotating the Right knob (3). Because of the synergic digital programming, both the voltage and the wire speed will adjust together.

5.1.5.3 To adjust the voltage independently, Rotate Left Knob (1) to adjust the welding voltage. This will change and give the display screen as below.

Then use the Left knob (1) to adjust the welding voltage -5~+5V from the standard synergic setting. This will not change the wire speed. It is recommended for ease of use that the wire feed target speed is adjusted first and then the voltage setting finetuned if necessary. Refer to the Welding Settings Quick Reference Chart on page 21 and inside the wire feed door for recommended common settings.

5.1.5.4 Press the Right button (4) again to adjust the inductance of the welding arc. Use the Right Knob (3) to adjust the inductance from -10 (less inductance) to +10 (more inductance).

A quick note regarding inductance this effectively adjusts the intensity of the welding arc.inductance makes the arc 'softer', with less weld spatter. Higher inductance gives a stronger driving arc which can increase penetration. Optimum inductance settings are affected by many welding variables such as: material type, shielding gas joint type, welding amperage, wire size.

welding amperage, wire size.

The default value of inductance is 10, it is recommended to keep this value unless the operator is an experienced welder. 5.1.5.5 Press the Right Button (4) again to return to the main wire speed/voltage adjustment screen. If the control panel is not adjusted after 5 seconds it will also return to the primary MIG adjustment mode. Or press the Left/Right (1)/(3) to return to the primary MIG adjustment mode directly.

5.1.5.6 During welding the screen display will change to show the actual welding voltage and welding current as pictured below

5.1.5.7 2T/4T function: press the Right Button (4) ,2T/4T Selection Switch to move between 2T and 4T modes. 4T operation means the trigger is pulled once to start welding and pulled again to stop. This is useful for long weld joints. 2T mode, the trigger must be depressed and held during welding.

5.1.5.8 Wire check function: press the Right Button (4) again to enter to the wire check mode, rotate Right knob (3) to select ON/OFF

5.1.6 Feeding the wire

- 1.6.1 Remove the conical nozzle (24) and the welding tip (25) from the torch. The conical nozzle is removed by turning clockwise and pulling off simultaneously. The welding tip threads out of the tip adapter.
- 5.1.6.2 With the wire feed cover door still open pull the torch trigger (20) and check that the wire is feeding smoothly through the feed roller and into the torch
- 5.1.6.3 Now stretch the torch lead and handle out as straight as possible from the machine and select the wire check function. This will start the feed motor running at full speed to feed the wire through the torch liner.
- 5.1.6.4 Once the wire comes out past the end of the torch neck, pull the torch trigger, or press any button on the display to stop the automatic wire feed.
- 5.1.6.5 Close the wire feed cover door
- 5.1.6.6 Replace the welding tip (25) and conical nozzle (24) back onto the torch neck and trim off any excess wire You are now ready to weld!

5.1.7 MMA/STICK mode operation

- Note MMA/Stick Welding requires an MMA lead set.
- 5.1.7.1 Connect Earth Lead Quick Connector (23) to the negative (-) output welding terminal (7).
- 5.1.7.2 Connect Earth Clamp (22) to the work piece. Contact with workpiece must be strong contact with clean, bare metal, with no corrosion, paint, or scale at the contact point
- 5.1.7.3 Connect the ARC/electrode holder lead (optional) to the positive (+) welding output terminal Note some welding electrode types utilize different connection polarity. If in doubt, contact the electrode manufacturer
- 5.1.7.4 Turn the machine on at the Mains Power Switch (10).
- 5.1.7.5 Press the Left button (2) to mode section and select the mode by Left knob (1), and press the Left knob (1) to confirm the MMA selection.

The screen will show the preset MMA welding current. This can be adjusted by rotating the Welding Parameter Adjustment Knob (3).

- 5.1.7.6 When welding the display will change to show actual welding volts and amperage.
- 5.1.7.7 VRD: VRD stands for Voltage Reduction Device. The open circuit voltage at the output terminals of an MMA welding power source is high enough to potentially cause an electric shock to a person if they come in contact with the live terminals. VRD is a safety system that reduces this open circuit voltage to a level where the risk of electric shock is minimized. It does, however, make striking of the arc more difficult. Press the Right button (4) to switch VRD on/off.

5.1.8 Lift TIG operation

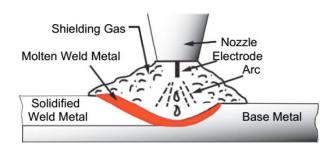
Note - TIG operation requires an argon gas supply, TIG torch, consumables, and gas regulator. These accessories are not included standard with the MIG-GS/GD; contact your supplier for further details.

- 5.1.8.1 Connect Earth Lead Quick Connector (23) to the positive (+) output welding terminal (6).
- 5.1.8.2 Connect Earth Clamp (22) to the work piece. Contact with workpiece must be strong contact with clean, bare metal, with no corrosion, paint, or scale at the contact point.
- 5.1.8.3 Connect the TIG torch power lead to the negative (-) welding output terminal (7).
- 1.8.4 Connect the gas supply to the TIG torch.
- 5.1.8.5 Turn the machine on at the Mains Power Switch (10).
- 5.1.8.6 Press the Left button (2) to mode section and select the mode by Left knob (1), and press the Left knob (1) to confirm the LIFT TIG selection.

The screen will show the preset LIFT TIG welding current. This can be adjusted by rotating the Right Knob (3) 5.1.8.7 When welding the display will change to show actual welding volts and amperage.

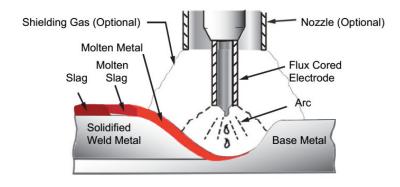
6. Welding settings quick reference chart

			RPWMIG	RPWMIG1400i Welding Settings Quick Reference Chart	k Reference C	hart				
		Welding Parameter					Material 7	Material Thickness		
Welding Material	Wire type	Polarity	Wire Size	Shielding Gas	0.039in	0.079in	0.118in	0.157in	0.197in	0.236in
						S	Settings Key. Voltage/Wire speed	stage/Wire spee	pa	
Mild Steel	Self Shielded Flux Core	Torch Negative(-)	0.032in	N/A		14.0/2.7	16.2/3.0	18.5/6.1	24.5/9.0	
Mild Steel	Self Shielded Flux Core	Torch Negative(-)	0.035in	N/A	-	16.3/2.0	18.8/3.6	20.2/4.1	21.0/9.0	21.6/9.0
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.024in	75% Argon + 25% CO2	15.9/3.4	19.5/7.8	-	-	-	-
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.032in	75% Argon + 25% CO2	12.8/2.0	14.1/3.3	17.5/6.6	20.0/8.2	21.0/9.0	21.0/9.0
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.024in	100% CO2	14.2/2.1	19.8/8.1			-	
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.032in	100% CO2	13.6/2.3	14.4/3.6	18.4/4.2	21.1/8.5	22.6/9.0	
	Usethis chart as a	guide only, as optimal s	ettings will var	Usethis chart as a guide only, as optimal settings will vary with joint type and operator tehonique. Cells left blank are not a recommended configuration	r tehcnique. Ce	Ils left blank are	not a recomme	ended configura	tion	


			RPWMIG	RPWMIG1400i Welding Settings Quick Reference Chart	k Reference C	hart				
		Welding Parameter					Material Thickness	Thickness		
Welding Material	Wire type	Polarity	Wire Size	Shielding Gas	1.0mm	2.0mm	3.0mm	4.0mm	5.0mm	6.0mm
						Š	Settings Key. Voltage/Wire speed	ltage/Wire spee	p	
Mild Steel	Self Shielded Flux Core	Torch Negative(-)	0.8mm	N/A	-	14.0/2.7	16.2/3.0	18.5/6.1	24.5/9.0	-
Mild Steel	Self Shielded Flux Core	Torch Negative(-)	0.9mm	N/A	-	16.3/2.0	18.8/3.6	20.2/4.1	21.0/9.0	21.6/9.0
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.6mm	75% Argon + 25% CO2	15.9/3.4	19.5/7.8	-	-	-	
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.8mm	75% Argon + 25% CO2	12.8/2.0	14.1/3.3	17.5/6.6	20.0/8.2	21.0/9.0	21.0/9.0
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.6mm	100% CO2	14.2/2.1	19.8/8.1	-	-	-	-
Mild Steel	Solid Wire ER70S-6	Torch Positive(+)	0.8mm	100% CO2	13.6/2.3	14.4/3.6	18.4/4.2	21.1/8.5	22.6/9.0	-
	Usethis chart as a	guide only, as optimal s	ettings will vary	Usethis chart as a guide only, as optimal settings will vary with joint type and operator tehonique. Cells left blank are not a recommended configuration	tehcnique. Ce	lls left blank are	not a recomme	ended configura	tion.	

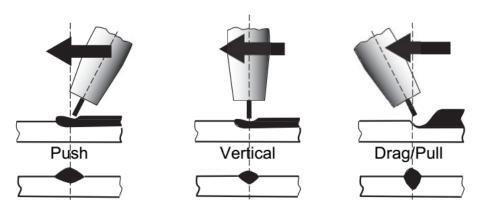
Basic welding guide

MIG (GMAW/FCAW) Basic Welding Technique


Two different welding processes are covered in this section (GMAW and FCAW), with the intention providing the basic concepts in using the MIG mode of welding, where a welding gun is handheld, and the electrode (welding wire) is fed into a weld puddle, and the arc is shielded by an inert welding grade shielding gas or inert welding grade shielding gas mixture.

GAS METAL ARC WELDING (GMAW): This process, also known as MIG welding, CO2 welding, Micro Wire Welding, short arc welding, dip transfer welding, wire welding etc., is an electric arc welding process which fuses together the parts to be welded by heating them with an arc between a solid continuous, consumable electrode and the work. Shielding is obtained from an externally supplied welding grade shielding gas or welding grade shielding gas mixture. The process is normally applied semi automatically, however and fairly thick steels, and some non-ferrous metals in all positions.

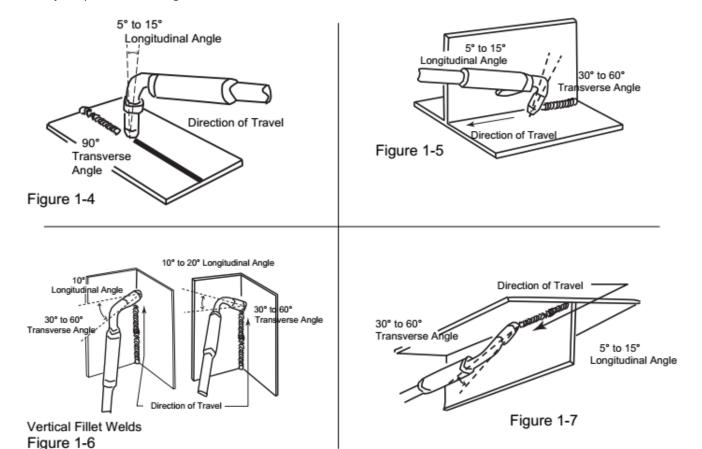
GMAW Process


FLUX CORED ARC WELDING (FCAW): This is an electric arc welding process which fuses together the parts to be welded by heating them with wan arc between a continuous flux filled electrode wire and the work. Shielding is obtained through decomposition of the flux within the tubular wire. Additional shielding may or may not be obtained from an externally supplied gas or gas mixture. The process is normally applied semi automatically; however, the process may be applied automatically or by machine. It is commonly used to weld large diameter electrodes in the flat and horizontal position and small electrode diameters in all positions. The process is used to a lesser degree for welding stainless steel and for overlay work.

FCAW Process

Position of MIG Torch

The angle of MIG torch to the weld has an effect on the width of the weld



The welding gun should be held at an angle to the weld joint. (See Secondary Adjustment Variables below) Hold the gun so that the welding seam is viewed at all times. Always wear the welding helmet with proper filter lenses and use the proper safety equipment.

CAUTION

Do not pull the welding gun back when the arc is established. This will create excessive wire extension (stick-out) and make a very poor weld.

The electrode wire is not energized until the gun trigger switch is depressed. The wire may therefore be placed on the seam or joint prior to lowering the helmet.

Distance from the MIG Torch Nozzle to the Work Piece

The electrode wire stick out from the MIG Torch nozzle should be between 10mm to 20.0mm. This distance may vary depending on the type of joint that is being welded

Travel Speed

The speed at which the molten pool travels influences the width of the weld and penetration of the welding run

MIG Welding (GMAW) Variables

Most of the welding done by all processes is on carbon steel. The items below describe the welding.

variables in short-arc welding of 24gauge (0.024", 0.6mm) to $\frac{1}{4}$ " (6.4mm) mild sheet or plate. The applied techniques and end results in the GMAW process are controlled by these variables.

Preselected Variables

Preselected variables depend upon the type of material being welded, the thickness of the material, the welding position, the deposition rate and the mechanical properties. These variables are:

Type of electrode wire

Size of electrode wire

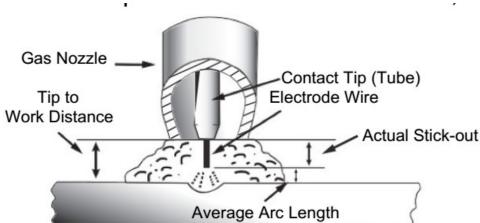
Type of gas (not applicable to self-shielding wires FCAW)

Gas flow rate (not applicable to self-shielding wires FCAW)

Primary Adjustable Variables

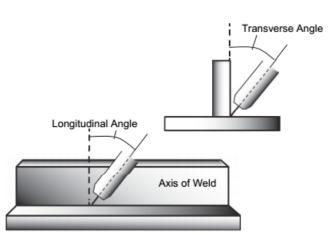
These control the process after preselected variables have been found. They control the penetration, bead width, bead height, arc stability, deposition rate and weld soundness. They are:

Arc Voltage

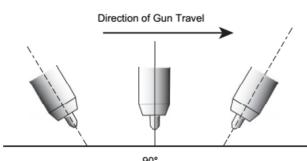

Welding current (wire feed speed)

Travel speed

Secondary Adjustable Variables


These variables cause changes in primary adjustable variables which in turn cause the desired change in the bead formation. They are:

- 1.Stick-out (distance between the end of the contact tube (tip) and the end of the electrode wire). Maintain at about 10mm stick-out
- 2. Wire Feed Speed. Increase in wire feed speed increases weld current, Decrease in wire feed speed decreases weld current



3. Nozzle Angle. This refers to the position of the welding gun in relation to the joint. The transverse angle is usually one half the included angle between plates forming the joint. The longitudinal angle is the angle between the center line of the welding gun and a line perpendicular to the axis of the weld. The longitudinal angle is generally called the Nozzle Angle and can be either trailing (pulling) or leading

(pushing). Whether the operator is left handed or right handed has to be considered to realize the effects of each angle in relation to the direction of travel.

Leading or "Pushing" Trailing or "Pulling"
Angle (Forward Pointing) Angle (Backward Pointing)
Nozzle Angle, Right Handed Operator

Establishing the Arc and Making Weld Beads

Before attempting to weld on a finished piece of work, it is recommended that practice welds be made on a sample metal of the same material as that of the finished piece

The easiest welding procedure for the beginner to experiment with MIG welding is the flat position. The equipment is capable of flat, vertical and overhead positions.

For practicing MIG welding, secure some pieces of 16 or 18 gauge (0.06" 1.5mm or 0.08" 2.0mm) mild steel plate 6" x 6" (150×150 mm). Use 0.030" (0.8mm) flux cored gasless wire or a solid wire with shielding gas

Setting of the Power Source

Power source and Wire feeder setting requires some practice by the operator, as the welding plant has two control settings that have to balance. These are the Wire speed control and the welding Voltage Control. The welding current is determined by the Wire speed control, the current will increase with increase Wire speed, resulting in a shorter arc. Less wire speed will reduce the current and lengthen the Increasing the welding voltage hardly alters the current level, but lengthens the arc. By decreasing voltage, a shorter arc is obtained with a little change in current level.

When changing to a different electrode wire diameter, different control settings are required. A thinner electrode wire needs more Wire speed to achieve the same current level

A satisfactory weld cannot be obtained if the Wire speed and Voltage settings are not adjusted to suit the electrode wire diameter and the dimensions of the work piece.

If the Wire speed is too high for the welding voltage, "stubbing" will occur as the wire dips into the molten pool and does not melt. Welding in these conditions normally produces a poor weld due to lack of fusion. If, however, the welding voltage is too high, large drops will form on the end of the wire, causing spatter. The correct setting of voltage and Wire speed can be seen in the shape of the weld deposit and heard by a smooth regular arc sound. Refer to the Weld Guide located on the inside of the wire feed compartment door for setup information.

Electrode Wire Size Selection

The choice of Electrode wire size and shielding gas used depends on the following Thickness of the metal to be welded Capacity of the wire feed unit and Power Source The amount of penetration required The deposition rate required The bead profile desired The position of welding Cost of the wire

7. Range of welding current and voltage in CO₂ welding

\Mirad(in)	Wirod(mm)	Short circuit	transition	Granular t	ransition
Wireφ(in)	Wireф(mm)	Current (A)	Voltage (V)	Current (A)	Voltage (V)
0.024	0.6	40~70	17~19	160~400	25~38
0.030	0.8	60~100	18~19	200~500	26~40
0.040	1.0	80~120	18~21	200~600	27~40

-The option of the welding speed

The welding quality and productivity should be taken into consideration for the option of welding speed. In case that the welding speed increases, it weakens the protection efficiency and speeds up the cooling process. As a consequence, it is not optimal for the seaming. In the event that the speed is too slow, the work piece will be easily damaged, and the seaming is not ideal. In practical operation, the welding speed should not exceed 1m/min.

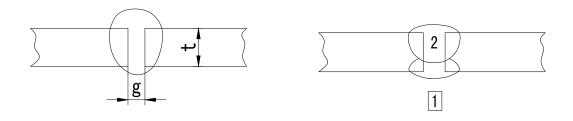
-The length of wire stretching out

The length of wire stretching out the nozzle should be appropriate. The increase of the length of wire stretching out of the nozzle can improve the productivity, but if it is too long, excessive spatter will occur in the welding process. Generally, the length of wire stretching out the nozzle should be 10 times as the welding wire diameter.

-The setting of the CO₂ flow volume

The protection efficiency is the primary consideration. Besides, inner-angle welding has better protection efficiency than external-angel welding. For the main parameter, refer to the following figure.

Option of CO₂ flow volume


Welding mode	Thin wire CO₂ welding	Thick wire CO ₂ welding	Thick wire, big current CO₂ welding
CO ₂ (L/min)	5~15	15∼25	25~50

8.WELDING PARAMETERS TABLE

The option of the welding current and welding voltage directly influences the welding stability, welding quality and productivity. In order to obtain the good welding quality, the welding current and welding voltage should be set optimally. Generally, the setting of weld condition should be according to the welding diameter and the melting form as well as the production requirement.

The following parameter is available for reference.

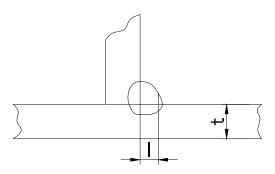
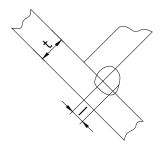
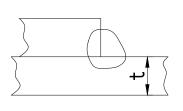
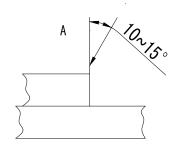

Parameter for butt-welding (Please refer to the following figure.)

Plate thickness T (in)	Gap g(in)	Wire φ(in)	Welding current (A)	Welding voltage (V)	Welding speed (cm/min)	Gas volume (L/min)
0.032	0	0.032~0.035	60~70	16~16.5	19.69~23.62	10
0.040	0	0.032~0.035	75~85	17~17.5	19.69~23.62	10~15
0.047	0	0.040	70~80	17~18	17.72~21.65	10


0.063	0	0.040	80~100	18~19	17.72~21.65	10~15
0.079	0~0.020	0.040	100~110	19~20	15.75~21.65	10~15
0.091	0.020~0.040	0.040 or 0.047	110~130	19~20	19.69~21.65	10~15
0.126	0.040~0.047	0.040 or 0.047	130~150	19~21	15.75~19.69	10~15
0.178	0.047~0.059	0.047	150~170	21~23	15.75~19.69	10~15

Parameter for flat fillet welding (Please refer to the following figure.)


Plate thickness t (in)	Corn size I (in)	Wire φ(in)	Welding current (A)	Welding voltage (V)	Welding speed (in/min)	Gas volume (L/min)
0.040	0.098~0.118	0.032~0.035	70~80	17~18	19.69~23.62	10~15
0.047	0.098~0.118	0.047	70~100	18~19	19.69~23.62	10~15
0.063	0.098~0.118	0.040 ~0.047	90~120	18~20	19.69~23.62	10~15
0.079	0.118~0.138	0.040 ~0.047	100~130	19~20	19.69~23.62	10~20
0.091	0.098~0.118	0.040 ~0.047	120~140	19~21	19.69~23.62	10~20
0.126	0.118~0.158	0.040 ~0.047	130~170	19~21	17.72~21.65	10~20
0.178	0.158~0.178	0.047	190~230	22~24	17.72~21.65	10~20


Parameter for fillet welding in the vertical position (Please refer to the following figure.)

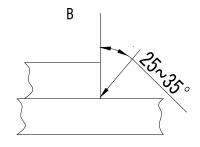


Plate thickness t (in)	Corn size I (in)	Wire φ(in)	Welding current (A)	Welding voltage (V)	Welding speed (in/min)	Gas volume (L/min)
0.047	0.098~0.118	0.047	70~100	18~19	19.69~23.62	10~15
0.063	0.098~0.118	0.040 ~0.047	90~120	18~20	19.69~23.62	10~15
0.079	0.118~0.138	0.040 ~0.047	100~130	19~20	19.69~23.62	10~20
0.091	0.118~0.138	0.040 ~0.047	120~140	19~21	19.69~23.62	10~20
0.126	0.118~0.158	0.040 ~0.047	130~170	22~22	17.72~21.65	10~20
0.178	0.158~0.178	0.047	200~250	23~26	17.72~21.65	10~20

Parameter for Lap Welding (Please refer to the following figure.)

Plate thickness t (in)	Welding position	Wire φ(in)	Welding current (A)	Welding voltage (V)	Welding speed (in/min)	Gas volume (L/min)
0.032	А	0.032~0.035	60~70	16~17	15.75~17.72	10~15
0.047	А	0.040	80~100	18~19	17.72~21.65	10~15
0.063	А	0.040 ~ 0.047	100~120	18~20	17.72~21.65	10~15
0.079	A or B	0.040 ~ 0.047	100~130	18~20	17.72~21.65	15~20
0.091	В	0.040 ~ 0.047	120~140	19~21	17.72~19.69	15~20
0.126	В	0.040 ~ 0.047	130~160	19~22	17.72~19.69	15~20
0.178	В	0.047	150~200	21~24	15.75~17.72	15~20

9.CAUTION

1. Working environment

- (1) Welding should be carried out in a relatively dry environment with its humidity of 90% or less.
- (2) The temperature of the working environment should be within -10°C to 40°C.
- (3) Avoid welding in the open air unless sheltered from sunlight and rain, and never let rain or water infiltrate the machine.
- (4) Avoid welding in dusty area or environment with corrosive chemical gas.
- (5) Avoid gas shielded arc welding in environment with strong airflow.

2. Safety tips

Over-current/overheating protection circuit is installed in this welding machine. If the output current is too high or overheating generated inside this welding machine, this welding machine will stop automatically. However, inappropriate use will still lead to machine damage, so please note:

1. Ventilation

High current passes when welding is carried out, thus natural ventilation cannot satisfy the welding machine's cooling requirement. Maintain good ventilation of the louvers of this welding machine. The minimum distance between this welding machine and any other objects in or near the working area should be 30cm. Good ventilation is of critical importance for the normal performance and service life of this welding machine.

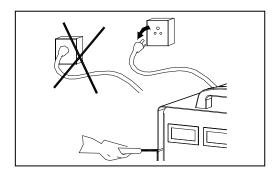
2. No over-current.

Remember to observe the max load current at any moment (refer to the optioned duty cycle). Make sure that the welding current should not exceed the max load current.

If welding is carried out under a current which is higher than the max current, over-current protection will occur; the output voltage of the welding machine will be not stable; arc interruption will occur. In this case, please lower the current.

3. No over-load.

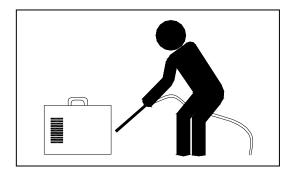
Over-load current could obviously shorten the welding equipment's life, or even damage the machine.

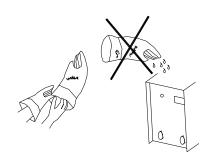

A sudden halt may occur while the welding operation is carried out while this welding machine is of over-load status. Under this circumstance, it is unnecessary to restart this welding machine. Keep the built-in fan working to bring down the temperature inside the welding machine.

4. Avoid electric shock.

An earth terminal is available for this welding equipment. Connect it with the earth cable to avoid the static and electric shock.

10.MAINTENANCE


- 1. Disconnect input plug or power before maintenance or repair on machine.
- 2. Be sure input ground wire is properly connected to a ground terminal.
- 3. Check whether the inner gas-electricity connection is well (esp. the plugs), and tighten the loose connection; if there is oxidization, remove it with sandpaper and then re-connect.


4. Keep hands, hair, loose clothing, and tools away from electrical parts such as fans, wires when the machine is switched on.

- 5. Clear the dust at regular intervals with clean and dry compressed air; if the working condition is with heavy smoke and air pollution, the welding machine should be cleaned daily.
- 6. The compressed air should be reduced to the required pressure lest the little parts in the welding machine be damaged.

- 7. To avoid water and rain, if there is, dry it in time, and check the insulation with mega-meter (including that between the connection and that between the case and the connection). Only when there is no abnormal phenomenon should the welding continue.
- 8. If the machine is not used for a long time, put it into the original packing in dry condition.

11.DAILY CHECKING

To make best use of the machine, daily checking is especially important. During the daily checking, please check in the order of torch, wire-feeding vehicle, all kinds of PCB, the gas hole, and so on. Remove the dust or replace some parts if necessary. To maintain the purity of the machine, please use original welding parts.

Cautions: Only the qualified technicians are authorized to undertake the repair and check task of this welding equipment in case of machine fault.

11.1. Power supply

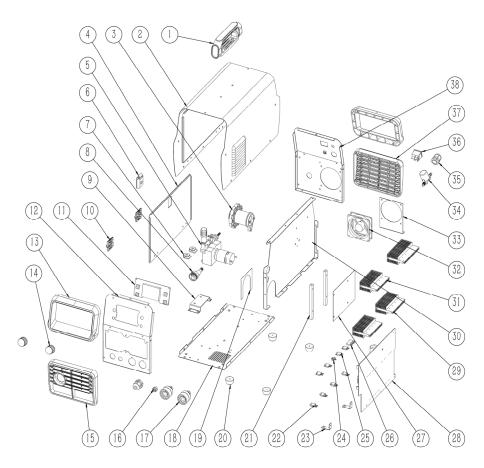
Part	Check	Remarks
	Operation, replacement, and installation of Switch.	
Control panel	2. Switch on the power, and check if the power indicator is on.	
Fan	Check if the fan is functioning and the sound generated is normal.	If the fan does not work or the sound is abnormal, do inner check.
Power supply	Switch on the power supply, and check if abnormal vibration, heating of the case of this equipment, variation of colors of case or buzz presents.	
Other parts	Check if gas connection is available, case and other joints are in good connection.	

11.2. Welding torch

Part	Check	Remarks		
Nozzle	Check if the nozzle is fixed firmly and distortion of the tip exists.	Possible gas leakage occurs due to the unfixed nozzle.		
	Check if there is spatter sticking or the nozzle.	Spatter possibly leads to the damage of torch. Use anti-spatter to eliminate the spatter.		
Contact tin	Check if the contact tip is fixed firmly.	Unfixed contract tip possibly leads to unstable arc.		
Contact tip	2. Check if the contact tip is physically complete.	The physically incomplete contact tip possibly leads to unstable arc and arc automatically terminating.		
	 Make sure that there is the agreement of wire and wire feed tube. 			
	2. Make sure that there is no bending or elongation of wire feed tube.	Bending and elongation of wire feed tube possibly leads to the unstable wire feed and arc. Replace it if necessary.		
Wire feeding hose	3. Make sure that there is no dust or spatter accumulated inside the wire feed tube, which makes the wire feed tub blocked.	If there is dust or snatter remove it		
	Check if the wire feed tube and O-shaped seal ring are physically complete.			

Part	Check	Remarks	
Diffuser	Make sure that the diffuser of required specification is installed and is unblocked.	Defection weld or even the damage of torch occurs due to the non-installation of diffuser or the unqualified diffuser.	

11.3. Wire feeder


Part	Check	Remarks	
Pressure adjusting handle	Check if the pressure-adjusting handle is fixed and adjusted to the desired position.	The unfixed pressure-adjusting handle leads to the unstable welding output.	
	 Check if there is dust or spatter inside the hose or beside wire-feeding wheel. 	Remove the dust.	
Wire-feeding hose	Check if there is a diameter agreement of wire and wire-feeding hose.	Non-agreement of the diameter of wire and wire-feeding hose possibly leads to the excessive spatter and unstable arc.	
	3. Check if rod and wire feeding groove are concentric.	Unstable arc possibly occurs.	
Wire-feeding wheel	Check if there is an agreement of wire diameter and wire-feeding wheel.	Non-agreement of wire diameter and wire-feeding wheel possibly leads to the excessive spatter and unstable arc.	
	2. Check if the wire groove is blocked.	Replace it if necessary.	
Pressure adjusting wheel	1. Check if the pressure adjusting wheel can rotate smoothly, and it's physically complete.	Unstable rotation or physically incompleteness of the wheel possibly leads to unstable wire feeding and arc.	

11.4. Cables

11.4. 0	11.4. Cables			
Part	Check	Remarks		
Torch - cable	1. Check if the cable of torch is twisted.	The twisted torch cable leads to unstable wire feeding and arc.		
	2. Check if the coupling plug is in loose connection.			
Output	1. Check if the cable is physically complete.	Relevant measures should be taken to obtain		
I .'. F	2. Check if insulation damage or loose connection exists.	stable weld and prevent the possible electric shock.		
Input cable	1. Check if the cable is physically complete.			
	2. Check if insulation damage or loose connection exists.			
Earth cable	1. Check if the earth cables are well fixed and not short-circuited.	Relevant measures should be taken to prevent		
	2. Check if this welding equipment is well grounded.	the possible electric shock.		

12. CONNECTION DIAGRAM OF THE MACHINE AC115V/AC230V R132 GNI +24V +15V GND -15V +24V | -24V | * O\\ \(\) C14 * \(\) \(\) \(\) \(\) *○× * O * 25 200:1 1 CON6 2 VH-02 ¥ ¥ PCON4 27

13.EXPLOSION DRAWING

NO	NAME	NO	NAME	
1	handle	20	rubber support	
2	machine cover	21	fixed beam	
3	wire spool shaft	22	rectifier diode	
4	side plate	23	circuit board support	
5	wire feeder	24	thermistor	
6	lock	25	IGBT	
7	gasket	26	rectifier bridge	
8	wire feeder motor	27	block plate	
9	wire feeder support	28	main board	
10	hinge	29	radiator	
11	front control board	30	clapboard	
12	front panel	31	radiator	
13	upper plastic panel	32	fan	
14	knob	33	fan support	
15	downward plastic panel	34	solenoid valve	
16	2-pin aviation plug	35	wire buckle	
17	35-50 quick connector	36	power switch	
18	base plate	37	downward plastic panel	
19	insulation plate	38	real panel	

14.IGBT Equipment Warranty

Welding Material Sales Effective Jan 1, 2021

Limited Warranty

This warranty applies to the original purchaser and is subject to the terms and conditions listed below.

This Limited Warranty is for new equipment sold after the above date, providing coverage for defects in material and workmanship at the time it is shipped from the factory.

Limited to the warranty periods listed below, Welding Material Sales will repair or replace the item under warranty that fails due to defects in material and workmanship. Welding Material Sales, Inc. must be notified within 30 days of the failure, so as to provide instructions on how to proceed with the repair of your welder and warranty claim processing. Warranty period begins at the time the welder is purchased from an authorized Welding Material Sales, Inc. distributor and/or retailer. Proof of purchase will be required for Welding Material Sales to proceed with any and all warranty claims, no exceptions.

Warranty Periods

Limited Warranty is divided into two categories: No warranty and 1 year.

No Warranty

Normal wear items including but not limited to MIG gun parts (contact tips, nozzle, adapter, liner), TIG torch parts (collet, cup, back cap, torch body) drive roll, contactor, and electrode holder are not covered under warranty.

1 Year

Solenoid valve, PC board, controls, gas valve, drive motor, and drive system. Parts and labor performed by authorized repair center with original equipment repair parts. Call 888-905-6737 for a repair center near you.